Разделы сайта

Читаемое

Обновления Apr-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 [ 12 ] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

уравнению (2-6) приведенное различие в разности температур обусловливает различие в катодных падениях напряжения на 9 В.

Сжатые дуги. При ограничении области существования дуги в радиальном направлении применением электродов малых диаметров или специальных ограничивающих сопл она приобретает новые свойства, отражаемые названием сжатая дуга . Сжатие столба соплом уменьшает площадь анодного пятна и зону его блуждания, что приводит к концентрации энергии на аноде и увеличению глубины его проплавления. Струя плазмы, истекающая из сопла, повышает также давление на жидкий мбталл ванны и вызывает увеличение глубины проплавления анода. Однако при некоторых критических скоростях струй жидкий металл выдувается и сварка становится невозможной. Зато интенсивно протекает процесс разделительной резки, имеющий важное значение в промышленности.

Мощность Ра, затрачиваемая на нагрев и плавление анода, складывается из мощности (La ~Ь в) -д передаваемой дугой активному пятну, и мощности передаваемой аноду струей плазмы: Ра = {U, + U,) /д + Рп-

§ 2-2. Шлаковая ванна

Шлаковой ванной называют объем жидкого шлака, в котором при сварке электрическая энергия преобразуется в тепловую. Вместе с тем шлаковая ванна защищает расплавленный металл от воздействия кислорода и азота воздуха, растворяет окислы и загрязнения на поверхности основного и электродного металлов и в некоторых случаях легирует металл шва. По химическому составу шлаковая ванна обычно представляет собой расплав различных окислов или солей.

В отличие от дугового разряда при электрошлаковых процессах нет явно выраженных приэлектродных областей. Ток переходит с электрода в шлаковую ванну сразу после того, как на его поверхности растворятся окислы. Обычно это происходит на глубине около 1 см от поверхности ванны. Еще несколькими миллиметрами глубже начинается плавление электрода. Оно заканчивается на глубине 20-30 мм в зависимости от скорости подачи электрода. Оплавляемый конец электрода все время сохраняет коническую форму, точнее форму параболоида вращения (рис. 2-7).

Электродный металл переносится в ванну каплями. Частота переноса капель возрастает с возрастанием скорости подачи электрода. При большой скорости подачи электрода, низком напряжении и малой глубине шлаковой ванны капли металла могут соединяться с металлической ванной раньше, чем отделятся от электрода. Такое металлическое соединение электрода с ванной существует очень короткое время; оно почти мгновенно разрушается под действием электродинамических усилий, возникающих в проводнике и резко увеличивающихся с возрастанием



плотности тока. Однако вследствие большой частоты замыканий (несколько сотен в секунду) среднее время прохождения тока через металл может составлять значительную долю общего времени сварки. Это явление не носит характера короткого замыкания Общая проводимость зоны сварки в момент замыкания возрастает всего в 1,5-1,7 раза. Мощность в зависимости от характеристики источника питания или изменяется незначительно, или несколько возрастает.

В отличие от дуговой сварки под флюсом при электрошлаковой сварке почти вся электрическая мощность передается шлаковой ванне, а от нее - электроду и основному металлу. Условием стабильности процесса является постоянство температуры шлаковой ванны, иначе говоря, равенство получаемой и отдаваемой ею теплоты. На рис. 2-8 показаны примерные зависимости выделяемой в шлаке и отдаваемой им мощности от средней температуры шлаковой ванны. При низких температурах кривая отдаваемой мощности всегда лежит выше кривой выделяемой мощности, так как теплоотдача происходит при всех температурах, превышающих температуру окружающей среды, а заметное выделение мощности в шлаке начинается при температуре, близкой к 1000° С.

Характер кривой отдаваемой мощности зависит от геометрических размеров полости, вкоторой происходит сварка; глубины

шлаковой ванны; коэффициентов теплопередачи от шлака к основному металлу и к охлаждающим устройствам; характера плавления основ-, ного металла; мощности, расходуемой на испарение летучих компонентов шлака; количества подаваемого в зону сварки присадочного металла и других факторов.


Рис. 2-7.

Форма конца проволочного электрода при электрошлаковой сварке:

а - напряжение сварки 39 В, б напряжение сварки 43 В

Рис 2-8. Влияние средней температуры шлаковой ванны на выделяемую (-) в шлаке и отдаваемую (---) мощность



На характер кривой выделяемой мощности влияют зависимость электропроводности шлака от температуры, внешняя характеристика источника питания и глубина погружения электрода в шлак. В том случае, когда кривые выделяемой и отдаваемой мощности не пересекаются, процесс вообще невозможен (кривая а). Если кривые пересекаются в одной точке (кривая б), то процесс не может быть устойчивым: влево от точки пересечения (точка А) температура и мощность будут непрерывно падать, а вправо - расти. При наличии второй точки пересечения (точки Б на кривой а) процесс будет устойчивым.

Кривая б получается при жесткой характеристике источника питания и размерах межэлектродного пространства, мало или медленно изменяющихся с температурой ванны. Это бывает при большом сечении расплавляемого электрода, особенно когда оно соизмеримо с сечением образующегося шва. Чтобы получить кривую в, нужно либо уменьшить жесткость характеристики источника, либо изменить характер зависимости проводимости ванны от температуры.

С повышением температуры растет удельная электропроводность шлака, но уменьшается глубина погружения электрода, что снижает проводимость ванны. Этот фактор действует тем сильнее, чем меньше сечение плавящегося электрода, так как при малых сечениях электрода изменение линейных размеров больше при том же изменении количества расплавляемого металла. При малом сечении электрода изменения формы межэлектродного пространства достаточно для стабилизации температуры ванны Процесс идет устойчиво даже при совершенно жесткой характеристике источника питания и различных составах шлаковой ванны.

Вследствие вертикального положения оси шва поверхность металлической ванны оказывается расположенной ниже места плавления кромок (рис. 2-9). Расплавленный металл стекает вниз. Кромки 2 свободно омываются горячим шлаком 3 и интенсивно плавятся. Благодаря интенсивному перемешиванию шлака плавление кромок происходит на большем расстоянии от электрода 1, чем это возможно при дуговой сварке. Более раннему плавлению свариваемых кромок способствует также интенсивный подвод теплоты от металлической ванны 4, показанный на рис. 2-9 стрелками. В результате удаленный от кромки основной металл плавится несколько раньше, чем сама кромка.

Практическим следствием этих особенностей является малый расход флюса, составляющий, с учетом потерь на рассыпание, в среднем 5% массы наплавленного металла, и малый расход электрической энергии на 1 кг наплавленного металла -в 1,5-

Рис. 2-9. Форма шлаковой ванны 46




1 2 3 4 5 6 7 8 9 10 11 [ 12 ] 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка