Разделы сайта

Читаемое

Обновления Apr-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 [ 193 ] 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

более подвержены кристаллизационным Трещинам при сварке, чем углеродистые конструкционные стали.

Это объясняется следующими специфическими особенностями строения и условий кристаллизации высоколегированных швов сильно развитой транскристаллитной направленной первичной микроструктурой; увеличенной литейной усадкой кристаллизующегося металла; значительными растягивающими напряжениями, действующими на сварочную ванну в процессе ее затвердевания; многокомпонентным легированием, усиливающим вероятность появления малых количеств легкоплавкой эвтектической составляющей на границах дендритов в момент завершения кристаллизации сварочной ванны.

На практике нашли применение следующие пути предотвращения кристаллизационных трещин в высоколегированных швах: создание в металле шва двухфазной структуры, ограничение в нем содержания вредных примесей и легирование такими элементами, как молибден, марганец, вольфрам; применение фтористо-кальциевых электродных покрытий и фторидных сварочных флюсов, применение различных технологических приемов.

Остановимся кратко на характеристике этих пугей. Образование в шве двухфазной структуры (аустенит и первичный феррит, аустенит и первичные карбиды, аустенит и боридная фаза эвтектического происхождения, аустенит и хромоникелевая эвтектика) способствует ее измельчению (см. рис. 10-26). В результате удается полностью или частично подавить транскристаллитную первичную структуру. Такие швы несравненно более стойки против образования кристаллизационных трещин, чем однофазные чистоаустенитные

Чтобы получить двухфазное аустенитно-ферритное строение металла шва, обеспечивают в нем соответствующее соотношение содержания ферритизирующих и аустенитизирующих элементов. Это возможно с помощью структурной диаграммы (рис. 10-24). Удовлетворительная стойкость против образования кристаллизационных трещин достигается при наличии в металле шва 2-3% первичного б-феррита.

На этом принципе создано большинство сварочных материалов (электродов и проволок), предназначенных для сварки коррозионностойких аустенитных сталей Х18Н10Т, Х18Н12Т, Х17Н13Д12Т и жаропрочных Х16Н14 (ЭП17), Х16Н16 (ЭП184) и др.

Сварка аустенитных сталей электродами и проволокой с содержанием феррита до 2-3% связана с определенными трудностями. Так, при чрезмерном проплавлении основного металла возможно образование в шве объемов металла с чистоаустенитной структурой, склонного к кристаллизационным трещинам. Поэтому на практике применяют сварочные материалы, обеспечивающие получение в металле шва свыше 2-3% феррита. Например, электроды ОЗЛ-8 (08Х20Н9) обеспечивают получение в на-



плавленном металле 3,5-8,5% феррита, электроды ЭА-400/10У (07Х18Н10Г2) -2-8%, а проволока Св-06Х19Н10МЗТ -до 10%.

Для сварки корневых валиков многопроходных швов, когда доля основного металла в шве значительна, применяют присадочные материалы с более высоким содержанием феррита-порядка 5-10%; например, электроды ЦТ-15-1 (08Х20Н9Г2) дают 5,5- 9,0% феррита; ЦТ-16-1 (08Х20Н9ВБ) - 6,0-9,5% феррита. В некоторых случаях, например при сварке жаростойких аустенитных сталей типа 2Х25Н20С2, отличающихся исключительно высокой склонностью к образованию кристаллизационных трещин, для этих целей применяют сварочные электроды со значительно более высоким содержанием феррита. Так, электроды марки ГС-1 (10Х25Н9Г6С2), используемые для сварки корневых валиков этих сталей, дают в наплавленном металле 25-30% феррита.

Швы с повышенным содержанием первичного феррита более стойки против межкристаллитной коррозии. Причиной этого вида коррозии являются фазовые превращения в металле шва, сопровождающиеся обеднением пограничных слоев зерен и кристаллитов хромом в результате встречной диффузии углерода и хрома. Наличие первичного феррита в сварных швах вносит качественные изменения в этот процесс. Фазовые превращения в этом случае локализуются в объемах, занимаемых первычным ферритом, который, как известно, способен растворить больше хрома, чем аустенит. Вследствие этого обеднения пограничных слоев хромом до критических концентраций не происходит и такие швы обладают более высокой сопротивляемостью межкристаллитной коррозии.

Вместе с тем не следует забывать, что швы и стали с повышенным содержанием феррита более подвержены сигматизации в интервале температур 450-850° С, а следовательно, и потере пластичности, чем стали и швы с ограниченным содержанием феррита или чистоаустенитные. Поэтому для обеспечения служебных характеристик конструкций и узлов, работающих в интервале критических температур (преимущественно 450-650° С), содержание феррита в шве должно быть ограничено до 2-3%.

Это требование особенно тщательно должно соблюдаться при сварке конструкций, длительно работающих при этих температурах, например контуров атомных станций, высокотемпературных химических реакторов, паропроводов, поверхностей нагрева котлов и др. Для сварки таких конструкций разработаны сварочные проволоки и электроды со строго регламентированным содержанием феррита в пределах 2-5% (например проволоки CB-04X17H10M2 и Св-02Х17Н10М2-ВИ и электроды 48А-1 и 48А-2, созданные на базе этих проволок).

Измельчение структуры шва путем создания в нем ферритной фазы нашло широкое применение на практике. Однако этот путь предотвращения образования кристаллизационных трещин не



может быть использован при сварке сталей с большим запасом аустенитности и тем более сплавов на железоникелевой и никелевой основах. Чтобы при сварке таких сталей и сплавов получить двухфазные аустенитно-ферритные швы, понадобилось бы ввести в них чрезмерно большое количество ферритизаторов. Это неизбежно повлекло бы за собой значительное изменение свойств твердого раствора и резкое падение пластичности металла шва. Поэтому на практике сварку стабильноаустенитных сталей и сплавов выполняют в основном чистоаустенитными или двухфазными аустенитно-карбидными и аустенитно-боридными швами, отличающимися более высокой стойкостью против охрупчивания при длительной эксплуатации. Представляет также значительный интерес сварка двухфазными швами с хромоникелевой эвтектикой.

Предотвращение образования кристаллизационных трещин в чистоаустенитных швах достигается: ограничением содержания вредных примесей - серы, фосфора, свинца, сурьмы, олова, висмута, а также таких элементов, как кремний, титан, алюминий и ниобий, способствующих образованию по границам кристаллитов легкоплавких прослоек; заменой части никеля марганцем; легированием шва молибденом, вольфрамом, танталом, азотом, рением. Положительное действие этих элементов на стойкость чистоаустенитных швов против образования кристаллизационных трещин широко освещено в специальной литературе.

Перечисленные пути предотвращения образования кристаллизационных трещин в чистоаустенитных швах используют при разработке сварочных материалов. В качестве примера можно привести нашедшие применение на практике сварочные проволоки СВ-08Х21Н10Г6, Св-08Х20Н9Г7Т, 1Х16Н14Г7В2Б (ЭП462), СВ-10Х16Н25АМ6 с 0,1-0,2% азота, 06Х15Н30Г8В7МЗТ (ЭП235), 08Х25Н55В15Т (ЭИ868), Св-06Х15Н60М15 и созданные на их базе сварочные электроды ЗИФ-1 (13Х20Н9Г6Т), ЦТ-23 (16Х15Н15Г6В2Б), ЭА-395/9 (09Х15Н25АМ6), ЦТ-22 (06Х15Н35В7Г6ТЮ), НИАТ-7 (06Х21Н55М10В12), ЦТ-28 (08Х13Н65М15В4) и др.

Создание в металле шва двухфазной аустенитно-карбидной или аустенитно-боридной структуры как средства борьбы с кристаллизационными трещинами также довольно широко применяется на практике. Чтобы металл шва приобрел двухфазное аустенитно-карбидное строение, его легируют углеродом. СЗднако углерод оказывает резко отрицательное действие на коррозионную стойкость высоколегированных сталей, сплавов и сварных швов. Поэтому к указанному средству повышения стойкости шва против образования кристаллизационных трещин при сварке нержавеющих сталей можно прибегать только при условии одновременного легирования их такими элементами, как ниобий и титан, способными связать углерод в прочные карбиды.

На практике аустенитно-карбидные композиции нашли применение преимущественно при сварке жаропрочных и жаростойких



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 [ 193 ] 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка