Разделы сайта

Читаемое

Обновления Mar-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 [ 199 ] 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

требует от сварщиков весьма тщательного и грамотного к ним подхода. Технологию сварки необходимо назначать с учетом всех возможных условий эксплуатации сварных соединений. Конструировать изделия из высоколегированных сталей и сплавов следует с учетом конкретной возможной технологии их сварки.

§ 10-10. Сварка плавлением высоколегированных сталей и сплавов

При изготовлении изделий из высоколегированных сталей и сплавов применяют все виды сварки плавлением: под флюсом, покрытыми электродами, в среде защитных газов, плазменную, контактную, электрошлаковую, электроннолучевую, а также специальные виды сварки: диффузионную в вакууме, сварку трением и др. Значительную часть узлов из жаропрочных сталей и сплавов изготовляют пайкой.

Сварка под флюсом. Сварка под флюсом является ведущим технологическим процессом в производстве химической и нефтехимической аппаратуры из коррозионностойких сталей. Находит применение она и при производстве изделий из жаропрочных сталей и сплавов.

Столь широкое применение сварки под флюсом обусловлено рядом существенных преимуществ ее перед ручной сваркой. При сварке под флюсом, как и при других методах механизированной сварки плавлением, можно получать швы практически любой длины без перерывов. При этом резко уменьшается число кратеров. Это имеет большое значение, так как на высоколегированных швах возможность образования кристаллизационных трещин в Кратерах значительно выше, чем на углеродистых.

Но самое большое значение имеет постоянство условий сварки под флюсом и, как следствие, постоянство химического состава и свойств металла шва. Это очень важно в отношении высоколегированных сталей и сплавов, потому что незначительное изменение химического состава металла шва может привести к образованию в нем кристаллизационных трещин или существенному ухудшению его коррозионных или жаропрочных свойств. Например, повышение в металле аустенитного шва количества углерода на 0,02-0,03% в ряде случаев может привести к потере его коррозионной стойкости, а повышение содержания кремния на 0,2-0,3% может быть причиной образования кристаллизационных трещин и т. д.

Сварка под флюсом дает возможность получать гладкие швы практически без чешуек с плавным переходом к основному металлу. Такие швы отличаются более высокой коррозионной стойкостью по сравнению со швами, выполненными вручную. Это еще одно немаловажное преимущество сварки под флюсом перед всеми видами ручной сварки.



Техника сварки под флюсом высоколегированных сталей и сплавов практически не отличается от техники сварки обычных углеродистых сталей. Имеется, однако, ряд специфических особенностей, характерных только для высоколегированных сталей и сплавов.

К числу этих особенностей относится преимущественное использование постоянного тока. Это вызвано тем, что для сварки высоколегированных сталей и сплавов применяют фторидные и высокоосновные бесфтористые флюсы, сварка под которыми на переменном токе затруднена. Сварку под фторидными флюсами независимо от их окислительной способности производят постоянным током обратной полярности, а под высокоосновными бесфтористыми флюсами - постоянным током прямой полярности (см. § 42).

Сварку под флюсом высоколегированных сталей и сплавов выполняют швами относительно небольшого сечения (более стойки против кристаллизационных трещин), что предопределило преимущественное использование в этом случае тонкой проволоки. Наиболее широко применяют проволоку диаметром 2-3 мм, в то время как при сварке углеродистых сталей предпочтительна более толстая проволока (диаметром 3-5 мм). В связи с этим при сварке высоколегированной проволокой приходится значительно уменьшать вылет электрода.

Проволока из аустенитных сталей и сплавов из-за пониженной теплопроводности и высокого электрического сопротивления при прочих равных условиях плавится быстрее, чем обычная низкоуглеродистая проволока. Поэтому для получения сварных швов с хорошим формированием вылет электрода приходится еще больше уменьшать (примерно в 1,5-2 раза по сравнению с вылетом обычной стальной проволоки). Так, при сварке аустенитной проволокой диаметром 2-3 мм вылет электрода не должен превышать 20-30 мм.

Температура плавления аустенитных сталей и сплавов на 50-150° С ниже, чем обычных углеродистых. Поэтому для получения провара такой же глубины, как и на углеродистых сталях, при сварке под флюсом, а также и других видах сварки плавлением аустенитных сталей и сплавов величину тока следует уменьшать на 10-30%.

Особое внимание при механизированной сварке сталей и сплавов этой группы необходимо обращать на состояние токоподводящих мундштуков. Из-за более высокого коэффициента трения высоколегированной проволоки по меди и медным сплавам мундштуки быстро изнашиваются. В результате нарушается электрический контакт между мундштуком и проволокой и ухудшается формирование шва; возможно образование дефектов типа непроваров, подрезов и др.

Для сварки под флюсом высоколегированных сталей и сплавов используют почти все сварочные проволоки, предусмотренные



гост 2246-70 (табл. 10-22). Кроме того, для сварки сталей и сплавов этой группы применяют довольно большое количество сварочных проволок, выпускаемых по ведомственным техническим условиям (табл. 10-23).

Высоколегированные жаропрочные стали и сплавы сваривают в основном под фторидными безокислительными флюсами АНФ-1П, АНФ-5, АНФ-8, АНФ-23, АНФ-24, 48-ОФ-6, а также окислительными бескремнистыми флюсами АНФ-17 (система CaFg- AI2O3-МпО) и АНФ-22 (система СаРа-В2О3). Для сварки коррозионностойких сталей наибольшее применение получили низкокремнистые флюсы АН-26, 48-08-10 и АНФ-14 (см. § 42).

Практически все флюсы для сварки высоколегированных сталей и сплавов способны гидратироваться. Поэтому во избежание образования пор в швах их необходимо прокаливать непосредственно перед сваркой.

Флюсы, используемые для сварки коррозионностойких сталей, подлежат обязательному контролю на углерод. Содержание его во флюсе не должно превышать 0,2%, а в случае сварки сверх-низкоуглеродистых сталей содержание углерода во флюсе желательно ограничить до 0,1%.

Современные фторидные флюсы в сочетании с высоколегированными проволоками позволяют успешно сваривать ответственные конструкции из высоколегированных сталей и сплавов.

Ручная дуговая сварка. Высоколегированные стали и сплавы вручную сваривают так же, как и обычные конструкционные стали. Вместе с тем имеется ряд специфических особенностей, главные из которых: преимущественное применение электродов с фтористо-кальциевым покрытием; сварка на постоянном токе обратной полярности-; сварка короткой дугой без поперечных колебаний конца электрода; сварка сравнительно короткими электродами на небольших токах.

В соответствии с ГОСТ 9466-60 и 10052-62 типы электродов для сварки высоколегированных сталей и сплавов обозначаются индексами Э, ЭАФ, ЭФ и ЭА (табл. 10-24).

Размеры и общие технические требования к указанным электродам регламентированы ГОСТ 9466-60. Условное обозначение электродов в соответствии с этим ГОСТом должно включать марку электрода, тип электрода, диаметр сварочной проволоки и номера ГОСТов.

Для примера приведем условное обозначение электродов ОЗЛ-7 типа ЭА-1 Б диаметром 4 мм, применяемых для сварки сталей типа Х18Н10Т: ОЗЛ-7 - ЭА-1Б-4,0 ГОСТ 10052-62 и ГОСТ 9466-60.

Ряд марок электродов для сварки высоколегированных сталей и сплавов предусмотрен также ведомственными техническими условиями.

Для сварки коррозионностойких аустенитных сталей типа 18-10 и 17-13, жаропрочных сталей типа 14-14 и 14-16 и жаро-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 [ 199 ] 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка