Разделы сайта

Читаемое

Обновления Apr-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 [ 209 ] 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

Технология сварки цветных металлов

Производство цветных металлов, и в особенности алюминия, неуклонно возрастает, опережая рост выпуска стали. С каждым годом увеличивается число металлов и сплавов, используемых в качестве конструкционных материалов для производства сварных изделий. Наряду с конструкциями из алюминия, меди, никеля, титана в сварном исполнении в настоящее время изготовляют изделия из циркония, серебра, платины, бериллия и других металлов, числящихся в категории редких или драгоценных. Недалеко то время, когда практически все используемые в технике цветные металлы найдут применение в сварочном производстве.

По своим физико-химическим свойствам многие цветные металлы резко отличаются от стали, что необходимо учитывать при выборе способа и технологии сварки. Наибольшее значение для оценки свариваемости того или иного металла имеют следующие свойства: сродство к газам воздуха, температуры плавления и кипения, теплопроводность, плотность, механические характеристики при высоких и низких температурах. По совокупности этих свойств рассматриваемые металлы можно условно разделить на такие группы: легкие (алюминий, магний, бериллий); активные и тугоплавкие (титан, цирконий, ванадий, вольфрам, молибден, ниобий); тяжелые цветные и драгоценные (медь, серебро, платина и др.).

Для сварки металлов первой и второй групп, отличающихся большой теплопроводностью либо высокой температурой плавления, предпочтительны источники нагрева с высокой концентрацией энергии (сварочная дуга, электронный луч). Поскольку эти металлы характеризуются также большим сродством к кислороду и азоту воздуха, нагретую в процессе сварки до высоких температур область металла



требуется изолировать от окружающей атмосферы, помещая ее в инертную среду или вакуум.

При сварке сплавов, содержащих значительные количества элементов с низкой температурой кипения, например цинка, вследствие интенсивного его испарения затруднено использование плавящегося электрода. В связи с разбрызгиванием жидких капель плавящийся электрод не применяется также при изготовлении изделий из драгоценных металлов, например платины. В том и другом случае обычно используют неплавящийся - вольфрамовый электрод.

Для сварки металлов третьей группы (кроме драгоценных), например меди и ее сплавов, находят применение почти все современные методы сварки плавлением. В большем объеме, чем для стальных изделий, для изделий из цветных металлов используют механизированные способы сварки, обеспечивающие получение изделий не только с точными размерами, но, что особенно важно, более высокого качества.

§ 11-1. Легкие металлы и их сплавы

Сварка алюминия и его сплавов. Применение алюминия в технике обусловлено его малой плотностью (2,7 г/см*), примерно в 3 раза меньшей, чем у стали, повышенной хладо-стойкостью, коррозионной стойкостью в окислительных средах и на воздухе. Чистый алюминий обладает малой прочностью (Og 10 кгс/мм), поэтому из него изготовляют изделия, для которых требуется только высокая коррозионная стойкость.

Алюминий и его сплавы обладают низкой температурой плавления (температура плавления чистого алюминия 660° С), высокой тепло- и электропроводностью, повышенным по сравнению со сталью коэффициентом линейного расширения и более низким значением модуля упругости.

Алюминий и его сплавы делят на две основные группы: деформируемые, применяемые в прессованном, катаном и кованом состояниях, и литейные (недеформируемые), используемые в виде литья (табл. 11-1). Деформируемые сплавы, в свою очередь, делят на термически не упрочняемые, к которым относятся технический алюминий и сплавы его с марганцем и магнием, и термически упрочняемые, к которым относятся сплавы алюминия с медью, цинком и другими элементами. К литейным относятся сплавы со значительным содержанием кремния или меди.

Большинство сварных конструкций изготовляют из деформируемых термически не упрочняемых сплавов алюминия в ненагар-тованном виде. В последние годы для изготовления сварных конструкций все в большем объеме начинают применять термически упрочняемые сплавы. Затруднение при сварке этих сплавов вызывает снижение прочности металла в околошовной зоне. Ранее для получения конструкций на этих сплавов применяли



Таблица 11-1

Состав некоторых марок алюминия и его сплавов, применяемых для изготовления сварных конструкций, %

Стандарт

Сплав

Система

Марка

не менее

не более или пределы

ГОСТ 11069-64

Деформируемые,

термически не упроч-

A95 АДО

99,95 99,50

0,0! 0,02

0,05

0,025

0,030 0,30

0,030 0,30

0,005 0,1

0,002 0,1

0,05

А1-Мп

r АМц 1 АМцС

Основа

0,2 0,1

0,05 0,05

1,0-1,6 1,0-1,4

0,25- 0,45

0,15-0,35

0,1 0,1

0,2 0,1

0,1 0,1

няемые

ГОСТ 4784-65

Al-Mg

/ АМгЗ АМг5

АМгб

Основа

0,1 0,1

3,2-3,8 4,8-5,8

5,8-6,8

0,3-0,6 0,5-0,8

0,5-0,8

0,5 0,4

0,5-0,8 0,5

0,2 0,2

0,02- 0,10

0,02- 0,10

0,1 0,1

Деформируемые, термиче-

Al-Mg-Si

( АД31 1 AB

Основа

0,1 0,1-0,5

0,4-0,9 0,45- 0,9

0,1 0,15- 0,35

0,5 0,5

0,3-0,7 0,5-1,2

0,2 0,2

0,15 0,15

0,1 0,1

ски упрочняемые

Al-Zn-Mg Al Cu-Mn

1915 * Д20

Основа

6,0-7,0

0,3 0,4-0,8

0,2 0,3

3,7 0,1

Zr 0,17 Zr 0,2

ГОСТ 2685-63

Литейные

Al-Si

Основа

10-13

* в сплаве содержится около 0,1% Cr.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 [ 209 ] 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка