Разделы сайта

Читаемое

Обновления Mar-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 [ 48 ] 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

h 1

Рис. 4-10. Изменение ударной вязкости в зависимости от температуры

Вырезая из стыкового соединения образцы для ударного изгиба так, чтобы разрез располагался в металле шва, околошовной зоне или основном металле, и испытывая эти образцы при различных температурах, можно определить для каждого участка металла температуры Ti и Гд. Сравнение этих температур показывает, какой из участков стыкового соединения имеет более высокую критическую температуру. Эти испытания были предложены в конце XIX в. и благодаря их простоте нашли весьма широкое распространение. Однако описанный метод имеет существенные недостатки, которые не позволяют использовать его для решения ряда возникающих в технике задач. Основные недостатки метода испытания надрезанных образцов на ударный изгиб следующие:

1. Образец имеет малые размеры и надрез произвольно выбранной формы. При других размерах и форме надреза результаты испытаний образца будут другими. Поэтому получают только сравнительные характеристики сталей. На основании таких испытаний нельзя предвидеть температуру, при которой может произойти хрупкое разрушение стали при работе ее в определенной конструкции.

2. Величина ударной вязкости состоит из работы, затрачиваемой на образование первой стадии хрупкого разрушения, на протекание второй стадии разрушения и на пластическую деформацию сжатого участка образца. Так как в различных сталях энергия, затрачиваемая на каждую из указанных стадий разрушения, может быть различна и соотношение между этими энергиями также может быть разное, нельзя быть уверенным в том, что получаемые при испытаниях данные дадут правильную сравнительную оценку исследуемых сталей.

В последнее время разработан ряд способов испытания образцов на ударный изгиб с определением энергии, необходимой для зарождения и распространения трещин. Усилия многих ученых направлены на создание методик, обеспечивающих получение достоверных и воспроизводимых результатов таких испытаний. Сопротивление распространению трещины может служить объективной характеристикой склонности материала к хрупкому разрушению. Эти способы испытаний, вероятно, найдут широкое применение.

Большое количество хрупких разрушений сварных морских судов типа Либерти , наблюдавшихся в 1942-1945 гг. в США, а также ряд аварий больших резервуаров для хранения жидкостей и газов и других конструкций в значительной степени способствовали изысканию методов испытаний, позволяющих судит!?




Рис. 4-11. Адмиралтейский образец для испытаний на растяжение и изгиб (а) и образец Кинцела для испытания на изгиб (б)

О надежности стали в условиях работы конструкции. В настоящее время имеется более 30 типов образцов разнообразной формы с надрезами различных видов, которые при испытаниях подвергаются растяжению, изгибу и другим видам нагрузки при различных температурах.

На рис. 4-11, а изображен образец для испытания на растяжение и изгиб, представляющий собой пластину размером 126Х X 75 X 5 мм с надрезом на одной стороне. На рис. 4-11, б изображен другой тип образца для испытания на изгиб. При испытании указанных образцов исследуют различные критерии определения перехода металла в хрупкое состояние. Такие критерии, как угол изгиба при максимальной нагрузке, сужение площади поперечного сечения и удлинение, характеризуют пластичность стали перед тем, как начнет распространяться трещина, т. е. характеризуют наступление первой стадии разрушения. Такие критерии, как внешний вид излома и работа после максимальной нагрузки, отражают поведение стали при распространении в ней трещины.

Если эти две группы критериев отражают различные свойства стали, то можно ожидать, что температура перехода стали в хрупкое состояние, установленная на основании этих критериев для одной и той же стали, будет различна. Проведенные исследования показали, что могут быть две температуры перехода металла в хрупкое состояние. Первую из них определяют на основании критерия внешнего вида излома. Этот критерий устанавливает температуру, ниже которой наблюдается хрупкая по внешнему виду поверхность излома стали. Вторую температуру определяют на основании критерия пластичности (угол изгиба, относительное удлинение и т. п.). Этот критерий устанавливает температуру, при которой сталь снижает свою пластичность ниже определенной условной величины.

Температура перехода стали в хрупкое состояние, определяемая на основе критерия пластичности, меняется в зависимости от условий сварки, остроты и глубины надреза. При изменении ука-




Охюждение мидким азотом

Рис. 4-12. Образец для определения способности стали сопротивляться распространению хрупкой трещины (Т. С. Робертсон):

а - общий вид образца;

б - кривая изменения напряжений в зависимости от температуры металла

занных факторов в неблагоприятную сторону температура перехода стали в хрупкое состояние повышается и приближается к температуре, установленной на основании критерия внешнего вида поверхности излома. С учетом этого можно считать, что критерий внешнего вида отражает поведение стали при самых неблагоприятных условиях, т. е. при наличии бесконечно острого надреза.

Для изучения способности различных сталей сопротивляться распространению хрупкой трещ,ины предложен образец, изображенный на рис. 4-12, а. На одном конце образца высверлено отверстие, в котором сделан надрез. Образец устанавливают в разрывной машине. Конец образца с отверстием охлаждают жидким азотом, противоположный конец образца нагревают. После установления стабильного перепада температуры образец нагружают до постоянной величины поперечных напряжений. Затем наносят удар крупнокалиберной пулей по охлажденному концу. Удар вызывает образование хрупкой трещины, которая под действием поперечных напряжений распространяется в образце и на каком-то расстоянии останавливается. Фиксируется температура участка образца, где остановилась трещина.

Испытания ряда образцов при разных нагрузках позволяют построить кривые (рис, 4-12, б), показывающие, как в зависимости от температуры стали изменяются критические поперечные напряжения, т. е. напряжения, при которых идет распространение хрупкой трещины. Область, лежащая выше и левее кривой, характеризует условия (напряжения и температуру), при которых однажды возникшая хрупкая трещина будет распространяться и пересечет весь образец. Ниже и правее кривой находится область,



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 [ 48 ] 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка