Разделы сайта

Читаемое

Обновления Mar-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 [ 79 ] 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

шовной зоны выделяется только при аустенитном наплавленном металле. В этих опытах производилась однослойная наплавка валиков под флюсом на сталь ЗОХГС толщиной 30 мм. Данные о высоком содержании водорода в околошовной зоне соединений с аустенитным швом также получены и с помощью локального спектрального анализа.

Наряду с этим имеются многочисленные сведения о значительном повышении стойкости околошовной зоны против образования трещин при снижении содержания водорода в металле шва. Так, например, при снижении содержания водорода в металле шва в 1,5-2 раза, достигаемом при использовании постоянного тока взамен переменного, заметно повышается стойкость околошовной зоны против образования холодных трещин при сварке низколегированной ферритной проволокой сталей типа 25ХГС.

Таким образом, водород в одних случаях существенно влияет на стойкость околошовной зоны против образования трещин, в других же, например при сварке среднелегированных сталей аустенитной проволокой, его роль второстепенна. Это позволяет заключить, что водород не является главным и тем более единственным фактором, определяющим образование холодных трещин в сварных соединениях. Его влияние на их образование необходимо рассматривать совместно с действием других факторов, обусловленных преимущественно закалочными явлениями в околошовной зоне и сварочными напряжениями. В соединениях с аустенитным швом положительное действие других факторов значительно преобладает над отрицательным действием водорода.

Закалочная гипотеза холодных трещин основана на большом экспериментальном материале исследований закалочных явлений в металле вообще и в сварных соединениях в частности. При этом особое значение имеют исследования, установившие наличие и сущность замедленного разрушения закаленных сталей и металлов.

Согласно этой гипотезе, механизм образования холодных трещин можно описать следующим образом. В процессе охлаждения в околошовной зоне сварного соединения закаливающихся сталей образуется характерная мартенситная структура металла и сложное напряженное состояние, обусловленное суммированием сварочных и структурных напряжений. Для большинства конструкционных сталей, при сварке которых наблюдается образование холодных трещин, структурные превращения в околошовной зоне заканчиваются в основном при охлаждении до температур порядка 150° С. К этому моменту завершается и формирование напряженного состояния в сварных соединениях из этих сталей.

Характерной и отличительной особенностью напряженного состояния сварных соединений, закаливающихся сталей с феррит-ным или аустенитным швом является возникновение сложного распределения продольных сварочных напряжений (рис. 6-17); это распределение характеризуется наличием сравнительно высоких напряжений сжатия в участке зоны па границе со швом и



m-wo -

-20 -30

т мм

-ю -ш

Рис. 6-17. Распределение продольных (а) и поперечных (б) напряжений, сварных соединениях закаливающихся сталей сферритными аустенитным швами

ВЫСОКИХ напряжений растяжения в соседнем участке этой зоны, а также в сварном шве. Такое распределение продольных напряжений обусловлено значительным увеличением объема металла околошовной зоны, непосредственно граничащего со швом, вследствие мартенситного превращения. В поперечном направлении возникают небольшие растягивающие напряжения в средней части соединения (по длине) и напряжения сжатия по краям (см. рис. 6-17). В результате на границе раздела шов-основной металл появляются большие скалывающие напряжения, способствующие замедленному разрушению закаленной стали и образованию холодных трещин типа отколов.

Замедленное разрушение происходит вследствие снижения прочности некоторых металлов под влиянием длительного статического нагружения при близких к комнатным температурах. В отдельных случаях это снижение прочности очень значительное. Так, например, для стали с повышенным содержанием углерода и легирующих элементов (типа 35ХГС) непосредственно после закалки с высоких температур (1200° С) длительная прочность может составить всего 10% кратковременной прочности. Причины замедленного разрушения перегретой закаленной стали заключаются в особой ее структуре.

Типичная структура закаленной стали, склонной к замедленному разрушению, наблюдается в участке перегрева околошовной зоны (рис. 6-18). Она характеризуется крупным зерном и соответственно крупными мартенситными иглами, выходящими своими торцами на границы зерен. В результате изменений в пограничных объемах зерен искажается атомное кристаллическое строение металла. Можно предполагать, что по строению и свойствам эти пограничные участки зерен приближаются к аморфным телам.

Как известно, аморфные тела могут претерпевать значительную деформацию во времени под действием постоянной нагрузки, недостаточной для сколько-нибудь заметного деформирования тел при кратковременном ее действии. В свете современных представ-



.IP*


Рис. 6-18. Структура металла околошовной зоны, участок перегрева, сталь 35ХЗНЗМ

лений О строении мартенсита отмеченное искажение кристаллической решетки следует связывать также с тем, какой мартенсит образуется в околошовной зоне - дислокационный, относительно пластичный, или двойниковый, весьма хрупкий. Последнее определяется содержанием углерода в стали и температурой мартенситного превращения (см. гл 6).

Исходя из замедленного характера разрушения сварных соединений и учитывая приведенные выше сведения о напряженном состоянии и структуре околошовной зоны, способствующих такому разрушению, зарождение и развитие холодных трещин можно описать следующей схемой (рис 6-19). Еще в процессе завершения структурных превращений крупнозернистый металл околошовной зоны с грубыми мартенситными иглами, как бы подготовленный к замедленному разрушению по границам зерен, подвергается воздействию сложнонапряженного состояния. Этот металл подвергается естественному испытанию на стойкость против замедленного разрушения непосредственно в процессе сварки.

Рассмотренное выше сложнонапряженное состояние на предлагаемой схеме отражено следующим образом: в околошовной зоне у границы со швом действуют продольные напряжения сжатия и поперечные напряжения растяжения В примыкающем участке шва у этой границы действуют продольные напряжения растяжения и те же поперечные напряжения растяжения а. При этих условиях на границе раздела возникают значительный перепад продольных напряжений (-а)-(-f-crj и значительные напряжения сдвига. По границам зерен околошовной зоны, направленным



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 [ 79 ] 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка