Разделы сайта

Читаемое

Обновления Mar-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 [ 8 ] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253


Физико-металлургические процессы при сварке плавлением

Процессы, происходящие при сварке плавлением, достаточно сложны и имеют существенное значение, так как определяют качество сварного соединения. При этом виде сварки применяются различные источники теплоты, обладающие специфическими свойствами. Эги источники оказывают тепловое и химическое воздействие на основной и присадочный металлы, от чего зависят состав и свойства металла шва, а также структура околошовной зоны. В результате нагрева, осуществляемого этими источниками теплоты, металл плавится, образуя сварочную ванну, а затем затвердевает в виде сварного шва. В зоне сварки происходит взаимодействие жидкого металла со шлаком и газом. Перечисленные процессы являются общими для всех способов сварки плавлением.

§ 2-1, Сварочная дуга

Сварочная дуга является электрическим разрядом в газах сравнительно высокого давления (не ниже 50 тор). Она характеризуется высокой плотностью тока в электропроводном газовом канале и низким напряжением между электродами. Электропроводность газа дуги обусловлена заряженными частицами - электронами и ионами, возникающими в результате его термической ионизации. Образующаяся смесь нейтральных атомов, электронов и ионов носит название плазмы.

В электрической дуге энергия источника ее питания преобразуется в кинетическую и потенциальную энергию частиц плазмы, которая, в свою очередь, передается электродам и частично превращается в электромагнитное излучение - фотоны, покидающие зону дуги.

Электропроводный газовый канал, соединяющий электроды, имеет форму усеченного конуса или ци-



линдра. Его свойства на различных расстояниях от электродов не одинаковы. Тонкие слои газа, примыкающие к электродам, имеют сравнительно низкую температуру. В зависимости от полярности электрода, к которому они примыкают, эти слои называются катодной и анодной областями дуги. По ориентировоч-нымданным протяженность (толщина) катодной областиравна нескольким длинам свободного пробега нейтральных атомов, т. е. = 10 *-4-10 см. Анодная область приравнивается к длине свободного пробега электрона, имеющей порядок 1 = == 10 *ч-10 * см. Между приэлектродными областями располагается наиболее протяженная, высокотемпературная область разряда - столб дуги (рис. 2-1).

Напряжение дуги U распределяется между различными ее областями весьма неравномерно (рис. 2-1). Значительная часть его падает в приэлектродных областях, что указывает на высокую

напряженность электрического поля t ==-- в них. I ак,

в катодной области протяженностью 1 = 10 см и падением напряжения = 10-20 В напряженность поля достигает величины = 2-10 В/см. В анодной области она оценивается значением = 10* В/см. Поэтому процессы, протекающие в приэлектродных областях, играют первостепенную роль в механизмах преобразования электрической энергии источников питания в тепловую и передачи ее электродам.

Столб дуги. В столбе дуги падение напряжения сравнительно невелико, а напряженность поля в нем составляет 10-50 В/см. При отсутствии ограничений в радиальном развитии столба дуги его диаметр, а также температура и напряженность поля в нем определяются внутренними процессами. Для оценки величины перечисленных параметров столба дуги современная теория использует уравнение баланса энергии единицы длины столба и уравнение термической иониза-


fZ -W 8 6 k г

5 2 ; о

Рис. 2-1. Основные области дуги и распределение потенциала в дуге:

/ - катод; 2 - катодная область; 3- столб; 4 - аноднаяобласть; 5 - анод

3 Заказ № 782

Рис. 2-2. Зависимость напряжений в приэлектродных областях от потенциала ионизации дугового газа



ции газа (Саха). Кроме того, для дуги справедлив принцип минимума , утверждающий, что из всех возможных состояний столба наиболее устойчиво состояние с минимальной напряженностью поля в нем Из этих уравнений и изложенного принципа вытекают:

температура столба. К:

Т = SOOUi; (2-1)

напряженность поля. В/и:

1у2,4д0.3

£=2.10 -; (2-2)

плотность тока, А/и:

/,p = 5,5.10--5ir, (2-3)

где f/, - потенциал ионизации; -сечение столкновения атомов с электронами.

По силе тока /д и его плотности гр легко вычислить сечение 5 и диаметр столба d, так как

5- /д

4 гср

Из уравнений (2-1)-(2-3) видно, что все параметры столба дуги наиболее существенно зависят от потенциала ионизации дугового газа, с ростом которого значительно увеличиваются температура столба, напряженность поля и плотность тока. Так, при горении дуги в парах калия (Ui = 4,33 эВ) и силе тока 200 А температура столба равна 3460 К, напряженность поля 8 В/см и плотность тока 300 А/см. При той же силе тока дуга в парах железа (t/, = 7,83 эВ) характеризуется параметрами Т = 6320 К, Е = 28 В/см и = 1800 А/см\

В большинстве случаев сварочные дуги горят в смесях многих газов и паров, включающих пары электродов, покрытий и флюсов, воздух, защитные газы и т. д. При термической ионизации такие смеси веду г себя подобно некоторому однородному газу с эффективным потенциалом ионизации U , зависящим как от потенциалов ионизации компонентов смеси U, так и от их относительной

концентрации Как показал В. В. Фролов,

= -b2(f) exp(-i ft). (2-4)

Из уравнения (2-4) следует, что наибольшее влияние на величину эффективного потенциала ионизации смеси оказывает тот компонент, который имеет самый низкий потенциал ионизации,



1 2 3 4 5 6 7 [ 8 ] 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка