Разделы сайта

Читаемое

Обновления Mar-2024

Промышленность Ижоры -->  Сварка металлов и сплавов плавлением 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 [ 80 ] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

WoS 61

Гоаница сплабления


Рис. 6-19. Схема зарождения околошовной трещины по границам зерен

ПОД углом 45° к оси шва, возникают значительные касательные напряжения т. Такое напряженное состояние способствует зарождению трещины замедленного разрушения на стыке трех зерен (см. рис. 6-19), которая в дальнейшем постепенно развивается в полном соответствии с изложенными выше представлениями.

Так зарождаются околошовные трещины всех видов - продольные (отрывы и отколы) и поперечные (собственно околошовные и переходящие в шов). Направление дальнейшего развития зародившейся трещины зависит от способности металла того или иного участка сварного соединения противостоять ее развитию, а также от конкретного сочетания продольных и поперечных напряжений и, в частности, от величины перепада напряжений на границе шов- околошовная зона. При этом, как правило, начальная стадия развития холодных трещин связана с границами крупных зерен.

Образованию отрывов в соединениях легированных сталей с аустенитным швом помимо перепада напряжений и наличия крупных зерен в околошовной зоне способствуют низкая пластичность и прочность зоны сплавления. Следует также учитывать, что такие причины замедленного разрушения (развития холодных трещин), как перегрев металла и большой перепад продольных напряжений, действуют одновременно и совместно только на границе шов- околошовная зона. Поэтому отмеченная граница в наибольшей степени подвержена образованию продольных трещин. Кроме того, металл околошовной зоны вблизи шва часто ослабляется развитием высокотемпературной химической неоднородности и неблагоприятным видоизменением неметаллических включений, обусловленным нагревом до высоких температур, близких к точке плавления.

Образование поперечных трещин также начинается в околошовной зоне на участке перегрева и обычно свидетельствует о высоком уровне продольных напряжений в соединении. В сравнительно редких случаях, преимущественно в соединениях с многослойными швами, поперечные холодные трещины могут зарождаться в околошовной зоне на некотором расстоянии от участка перегрева, в местах, где развиваются весьма высокие напряжения растяжения (см. рис. 6-17). Возможно также зарождение поперечных трещин в самом металле шва. Обычно это имеет место в многослойных малопластичных швах.



Выше было рассмотрено возникновение зародышей холодных трешин по границам зерен вследствие нарушения по этим границам атомного строения металла. В реальных металлах возможен и другой механизм образования зародышей таких трешин, связанный с наличием неметаллических включений. Последние могут располагаться в металле по границам и телу зерен. Зародышами холодных трещин могут стать неметаллические включения при их неблагоприятных форме, химическом составе и расположении, а также горячие трещины - надрывы, возникающие в участке крупного зерна околошовной зоны. В результате неизбежного нагрева этого участка до температур, близких к солидусу, в нем происходят значительные изменения исходных неметаллических включений основного металла. Это имеет существенное значение при электрошлаковой и дуговой однослойной сварке толстого металла.

Отмеченные изменения происходят в наибольшей степени в тех участках соединения, где максимальный перегрев околошовной зоны сочетается с высокими временными напряжениями растяжения при температурах, близких к солидусу. Такое неблагоприятное сочетание условий имеет место при сварке кольцевых швов толстостенных сосудов.

На рис. 6-20 показаны примеры зарождения холодных трещин от пленообразного неметаллического включения и от горячих трещин-надрывов.

При помощи электрошлакового и электроннолучевого переплавов можно существенно уменьшить общее количество неметаллических включений в основном металле, предельно ограничить содержание легкоплавких включений сульфидного происхождения и перевести их в более тугоплавкие соединения, а также достичь равномерного и мелкодисперсного распределения неметаллических включений в металле. При этом значительно повышается стойкость сварных соединений против образования холодных трещин. Аналогичные результаты можно получить, применив предварительную наплавку подлежащих сварке кромок.

Если наплавку выполнить металлом такого же химического состава, что и металл кромок, то стойкость соединения против образования холодных трещин обычно на 20-30% превысит стойкость соединения без наплавки. В этом случае эффект достигается вследствие благоприятных изменений состава и распределения неметаллических включений в наплавленном металле. Если же применить наплавку незакаливающимся металлом, например аустенитным, то можно почти полностью устранить опасность возникновения в соединениях холодных трещин.

Изложенное позволяет, с точки зрения закалочной гипотезы, объяснить влияние многочисленных и разнообразных факторов на стойкость соединений против образования холодных трещин. Рассмотрим этот вопрос на примере сварных соединений среднелегированных сталей. Исходным в этом объяснении является по-.цожение о том, что стойкость соединений против образования





Рис. 6-20. Зарождение холодной трещины в участке перегрева с развитой высокотемпературной неоднородностью от пленообразного неметаллического включения (а) и надрыва (б): X 1000



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 [ 80 ] 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

© 2003 - 2024 Prom Izhora
При копировании текстов приветствуется обратная ссылка